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1.0 INTRODUCTION

Modern high-speed digital computers and approximate numerical techmques haVe
made possible solutions to many clectromagnetic problems which traditionally have been
solved onty by an empirical approach. An example of a usetul type of problem that can be
solved numerically is radiation and scattering from thin-wire structures. “Thin-wire model-
ing” computer programs, when properly used. can be a highly accurate engineering tool for
antenna analysis.

This report brietly describes the general approach and applicability of thin-wire
modeling programs. Several programs in use at NIFLC are discussed and compared. Their
specitic application i support of the analysis of several antenna problems is examined and
evaluated. The examples described typify the problems which can be addressed via numeri-
cal modeling and demonstrate that numerical modeling is a valuable engineering tool,

['his report is a summary of the work performed i applying these numerical model-
ing teclnigues during fiscat year 1974, Hence, detailed discussion is limited to those aspects
which show how numerical modeling has contributed to an engineering solution. Relerences
are cited throughout the report to provide a source for more complete coverage ol a given
subject. The first part of this report is intended as an introduction tor the uninitiated reader
but mmay also prove informative to those currently using the same computer codes. The
second part describes how thin-wire modeling techniques have been applied to several engi-
neering problems.

1.1 THIN-WIRE MODELING TECHNIQUES

111 THIN-WIRE APPROXIMATIONS

I-lectromagnetic radiation problems can always be represented by an integral expres-
sion with an inhomogenecous source term. The general-purpose programs for frequency
domain analysis under discussion here usually approach the thin-wire antenna problem using
a Pocklington integral formulation.

The Tormulation for a z-directed dipole may be written as:

1

+k3G(z.2) | d2'

1(z")
wWeE —L/;’ Jz-

ol oy =
l"z (z) =

i f L/2 32G(2.2")
o]

where

_exp (-jkr)

Glz.2") 4nr

and ris the distance between the observation point (x, y. z) and the source point (x'.y'. 2.
Ll7 (z) is the incident or impressed field on the wire. and, since the wire,is assumed thin, the
field varies only in the direction of the wire. The limits of integration result because the
wire dipole extends from 2 = -L/2 to L/2 as shown in Figure 1. Note that the dipole antenna
is not assumed to be infinitely thin. The thin-wire approximations only limit the radius to
much less than a wavelength. The approximations also limit the current 1(z) to be only in
the axial direction of each wire. Then current and charge densities can be approximated by
filaments ol current and charge on the wire axes.
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Figure 1 Wae dipole of tength L, radius a centered aboul -axis.

112 METHOD O MOMENTS

The unitying %‘onccpl in this numerical treatment of radiation preblems is the
method of moments.= Basically. the method of moments is a techuique for reducing the
integral equation (1) to a system of linear algebraic equations where the unknowns are usual-
Iy coefficients in some appropriate expansion of the ¢ v.rent. The resulting matrix equation
can then be solved for the current by a high-speed digital computer.

Using the concepis of linear vector spaces and linear operations, equation (1) may be
expressed as the operator equation:

) =Laay |

where 1 I (/) is the known function or source and 1(z') is the unknown current function to
be dglcrmlnul The operator, L, performs a mapping from one subset containing | to one
contaiming l

Assummb the wires to be perfect conductors, the boundary condition for thie tangen-
tial component of the electric field at the wire surface 1s s itisfied (approximately) by requir-
ing that the axial component vanish at the surface of each wire. At points of excitation on
the wires of a transmit antenna, some ippropriate source model relates an impressed E-field
to the excitation voltage.




tn a frequently used approach, the subsectional approach, cach wire is visualtized as
divided into a number (N) ol short connected segments. A convenient form for the current
distribution on cach segment is assumed. Thus, the total current along the wire is approxi-
mated by an expansion i a serics of functions in the domain of L. as:

N
ll'/.') x z li |g',(/.')| > (3)
i=1
vhere ;:iw') are the expansion functions and 1 are their coefficients. The problem is to
sotve for these coefticients.
Substituting cquation (3) into equation (2) and using the lincarity of L:
N
s ol
S g n = .

i=1

Equation (4) can be rewritten as a matrix equition by applying a suitably defined inner
product and a set of weighting or testing functions (see Reference 2). The inner product of
(4) with cach tesdng function, 4 is performed, and, since the inner product is a linear oper-
ation, the resul is:

N
Z ll < 1j' L(gi(’l.')) >=< 1j. lll(l) >
= 1

1
wherej=1.2.3,.. . N. Equation (5) can now be written in matrix form as:
[Z] [t =[VI

so that
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I'here are noany possible choices for expansion fu nctions and testing functions.
Some combinations may produce faster convergence ol the solution (require fewer furctions
for a given accuracy). Hence, smaller matrices are required, resulting in a savings ol comput-
or core, Other combinations may provide simpler computations of matrix clements, thus
reducing computer run time. The most advantageous combination is currently under debuate.

Investigation of this important question is of paramount interest.

1.0 FLEMENTS OF A GENERAL-PURPOSE PROGRAM

The advantage of a general-purpose program is that extensive reprogramming is un-
necessary whenever a new problem is addressed. Also, special-purpose input algorithms can
be used to autontate the problem specification, producing a highly user-oriented engineering
tool. The user, however. must be cognizant of the program limitations set by the approxi-
mations inherent in the method of solution.  Fxperience gained from exercising the program
and sound engineering judgment are the keys to specitying the proper input data and inter-
preting the results.

Ideally, the input algorithms of a user-oriented general-purpose program will auto-
matically divide cach wire of the antenna structure into equal segments. (Fqual segmenta-
tion has no special advantage except lor ease in automation.) The user need only supply @
description of the antenna structure in terms of the conductor radius, the end points of cach
wire. and the number of segments on cach wire. Other parameters such as source location,
magnitude, and frequency are also specified by the user. In each cose, the parameters must
be selected with good engineering judgment in order to produce worthwhile results.

A general-purpose program must of course possess the capability to deal with
structures having multiple wire junctions. Some procedure must be implemented to extend
the matrix solution for the case of multiple wire junctions. Although the precise boundary
conditions applicable near the junctions aie subject to (leul‘:,3 it is generally agreed that
the currents at junctions in thin-wire structures should obey Kirchoff's current law. Hence,
it becomes a bookkeeping job, preferably carried on by the computer, to keep track of
junction locations and enforce the appropriate conditions on the currents.

Another important consideration is the selection of an appropriate source model.
Fortunately. satisfactory results are obtained tora large number of problems by using the
simplest source model, the delta gap. Occasionally a problem is encountered (for example,
sources and junctions occur in close proximity) which may require a more claborate source
model such as the bicone source™ or the magnetic frill.> Selection of the source is based on
the user’s experience.




1.3 COMPUTER CODES AT NELC

A number of computer programs using the approach outlined above have been
acquired and exercised by the Radio Technology Division, Code 2100, at NELC. A list of
these programs with their major attributes is given in table 1. Eachisa general-purpose pro-
gram. llewever, some are more user-oriented than others.

TABLE 1. TINN-WIRL COMPUTIER CODLS.
I'requency Domain

(MB Associates)
Sinusoidal Interpolation
Point Matching
Delta Gap Source Model

SYRACUSE  (Harrington. Kuo, S.rait, Syracuse University)
Piccewise Lincar Lxpansion FFunction
Galerkin Techinique
Delta Gap Source Model

(J. Richmond, Ohio State University)
Piccewise Sinusoidal Lxpansion IFunction
Galerkin Technique

Delta Gap Source Model

WP (NLLC)
Piecewise Sinusoidal Expansion Function
Point Matching
Delta Gap Source Model

Time Domain

TWTD (Lawrence Livermore Laboratory)
Quadratic Interpolation
Point Matching
Delta Gap Source Model

1.3.1 AMP

The AMP program was developed under a tri-services contract by MB Associates.
This program uses a three-term current expun.sion() (which involves a constant, sine. and
cosine term on each of the structure segments) with point matching and delta gap soure?
model. AMP is a well written, very user-oriented general-purpose program. The input rou-
tines provide a useful and efficient means of specifying the geometry and clectromagnetic
environment for an antenna problem, which is the chief advantage of AMP. In addition to
the original gecometry routines, the capability to gencrate circular arc and helical wire struc-
tures has been added. Also added is the capability to compute the near magnetic fields.

6.7,8




Another winique Feature meorporated into AMP 15 the option ol choosing an alternative to
the delta gap source model. The magnetic Irill source mu(lcl5 may be specilied Tor problems
mvolving sources complicated by the proximity of junctions and other conductors.

1.3.2 SYRACUSL

The SYRACUSE progrant is 4 general-purpose program written by Kuo and Struilm

using Harrmgton’s approach of piccewise hinear expansion Tunctions with Galerkin’s tech-
Higue. Galerkin's technique is the method ol moments approach in which the basis Tunctions
and testing functions are identical. Comparisons ol this program 1o AMP indicate that the
solutions converge aster (fewer expansion functions required Tor a given accuracy ) with
Galerkin's technigue. The program cmploys a method ol overlupping wires at junctions
which enforces KircholT's faw. Although the source model is confused by the use ol piece-
wise Hinear expansion functions, it is essentially a delta gap source.

o improve the utility ol the SYRACUSYE program, a data input package has been
added 1o the original program. The user supplies the coordinates ol wire end points, wire
raddii, wire connection data, and antenna enviromnent parameters (excitation. frequency. eto).
1 he input routines qutomatically segment the wires into equal segments and generate the
overlaps at junctions. This represents considerable improvement in the metliod ol duta
input since it streamlines the problem definition.

1.3.3 OSU

The OSU program employs the piccewise sinusoidal reaction technique developed by
J. Rlchmoml.l The program utilizes piecewise sinusoidal ex pansion functions. The reac-
tion techmigue is essentially the same as Harrington's method ol moments with Galerkin's
technique. The program also makes use ol a wire overlap scheme at junctions (similar to
that of the SYRACUSLE program) and employs the delta gap source model. OSU olfers
faster convergence than AMP, again because of Galerkin's technique and the ability to evalu-
ate some ol the integrals in closed form (an advantage ol the sinusoidal expansion functions).
Presently. however, OSU is linited in capability since it is not user oriented (as s AMP) and
can only treat structures with equal-radius wires. EfTort is continuing to improve its
capabilitics.

1.3.4 WHIP

The WHIP (Whip Antenna Program) program was developed by J. W. Rockway and
. M. Hansen of Naval Fleetronics Laboratory Center. ™= WHIP is very limited in scope. It
addresses only vertical whip antennas on an infinite, perfectly conducting ground plane. The
program was written primarily to determine the near-Tield structure of Navy whip antennas.
The program uses piecewise sinusoidal expansion functions with point matching and a delta
gap source model.




135 TWITD

The TWTD (Thin Wire Time Domain) program is a product ol the Lawrence Liver-
more | 1]])()]’:1[()]’)’." A4 e program solves an electric field integral equation in time using
the method of moments witl: subsectional collocation (quadratic interpolation with point
matching). The source may be either a time-dependent incident tield or a time-dependent
version ot the delta gap source model. depending on the user’s choice. The program solves
Tor the time-dependent induced currents which are used to find the time-dependent radiated
or scattered Felds. A discrete Fourier transform is used to determine the input impedance
characteristics.

Input routines similar to those used in MBA have been added to TWTD to produce a
Iiighly exible, user-oriented package. Also added is a plotting capability for casy display of
time and frequency response characteristics of an antenna.

Presently, TWTD has the ability to treat resistive-loaded structures only. It is, of
ceurse. highly desirable to extend this capability to include reactive type loads.

1.4 PROGRAM LIMITATIONS

The solution to an antenna problem generated by any of the thin-wire programs is at
best an approximation. [5.16 Noncetheless, highly accurate answers can be obtained by care-
Tul modeling of the antenna structure — by proper choice of segmentation and other relevant
parameters. The accuracy of calculated antenna characteristics depends on how well the
calculated current distribution conforms to the real case and hence on how well the antenna
is modeled.

In general, Tor accurate results, the nearer to the antenna structure that calculated
antenna characteristics are desired, the more accurately known must be the current. lfor ex-
ample, 1t is well known that the assumption of a sinusoidal current distribution on a simple
resonant dipole is suflicient to accurately determine the far fields. However, this approxims-
tion incorrectly predicts the input impedance. 17 Hence, higher resolution ol the calculated
currents is required For accurate determination of the impedance and near fields. The higher
resolution is obtained by liner segmentation within the limits ol the thin-wire approximation
(segment length must be large with respect to wire radius).

The calculations of impedance and near ficlds often appear highly sensitive to the
modeling of regions about feed points, wire junctions, and radius changes along the wires.
The closer together these critical regions occur, the greater their influence on the results.
The worst case occurs when junctions and large-radius changes are both in close proximity to
feed point. In such cases, fizer segmentation or more eleborate source models may be
required.

1.5 CONFIDENCE FACTORS

Reliable, accurate results are obtained when the engineer has accumulated sulficient
experience From Irequent exercise of the program to recognize these problem arcas. He
must not only be awiare of potential ditticulties when initially setting up the program, but
also when interpreting the results. Consequently, Tor eacli general-purpose program, the un-
mitiated user must run through a number of clementary problems, comparing the results to




real world measurements, until he has the conlidence to attempt new problems for which the
answers are as yet unknown, Fven then, the yardstick is always empirical data.

Development of this confidence factor entails modeling ol a number of simple anten-
na structures found i standard antenna texts. 18 The approach is to progress from the
simple case to the more complex. A natural first choice 1s dipoles in free space or monopoles
on a ground plane, Tollowed by inverted L antennas and T antennas, ete. For cach antenna
type. a number ol problems involving different wire radii and lengths are sclected, and the
segmentation is varied until the solution converges. Comparison with measured data then
provides the insight required for effective application of the computer program to problems
for which empirical data may be sketchy or unavailable.

A(n example of the type of problem used in this initial program validation is the T
antennal? shown in Table 2. Also shown are the “best™ resu'ts using the various general-
purpose programs along with empirical (lulu.]() This problem is presented as an example be-
cause it represents a signiticant step in the validation of the TW11) program. Figure 2 shows
the time response of the Teed point current to a Gaussian pulse, the Fourier translorm of
which is the input impedance given in Figures 3 and 4.

Another noteworthy problem is thie 35-foot twin whip pictured in Figure 5. This
antenna is similar to the standard 35-Toot twin whip in common use throughout the I'leet.
This problem is significant since the Teed point region is complicated by the proximity of
three junctions and two changes in radius. A comparison of the measured and calculated
vatues of input impedance is given in Table 3. The measurements were made on the NELC
ground plane. No values from the PSRT program are available, since inits present form it
facks the capability to account Tor differences of radii within the same structure.




TABLE 2. COMPARISON OFF T-ANTENNA IMPEDANCE COMPUTATIONS WITHI
THE MEASURED VALUES OF PARSAD. Y

2rh i
—;\- (h+ 9= 5

Radius of wire = 0.004/X
2nh _ 2nh _

=0.2 =
N 0.2 3 0.5

Measured ! 26+9.0 11+ 36

AMP 1.7 +j10‘3 11 +j3()
SYRACUSL 1.78 +j9.18 11.1 +J-34.3
PSRT* 1.7 +j3.8 11.4 +j3l.9

TWTD [P e j34

* Answer limited by array sizes
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TABLE 3. COMPARISON OFF MEASUREMENTS AND

COMPUTATIONS OFF A 35-FOOT TWIN WHIP.

4 MHz

6 MHz. 8 MHz

Meceasurement
AMP

SYRACUSE

9.0

9.89

8.45

jIOl.S

j70'0

j77'5

29.0 i‘).O 80.0+ j(>7.5

34.1 +j18.4 114.0+ iS()'S(‘

2‘).8+i2.01 101.4 +j57'8




2.0 SPECHIC APPLICATIONS

After developing sufficient confidence in the accurate application of the general-
purpose thin-wire modeling programs, it hecomes possible to utilize the programs as worth-
while engineering tools. The remainder ot this report is concerned with the application of
these engineering tools to support the antenna analysis work in the Radio Technology Divi-
sion of NELC. Four examples are discussed in some detail. These four examples are con-
cerned with the following projects:

1. 11" Antenna System Design Tor Patrol lydrotoil (Missile) (PHM)
2. MLA-1 Miniloop Antenna: A ‘Technical Evaluation
3. AN/PRC-104 Antenna lmprovement Study

4. Lvaluation ol Multiturn Loop Antenna

In cach example the specific project is outlined and the antenna analysis problems of
particular interest are described. Of particular interest are those technical problems lTor
which the general-purpose thin-wire modeling programs were utilized. The actual utilization
ol the numerical modeling programs is described in some detail while other aspects of the
engineering problem are discussed only as required to lend support. The primary objective
of these examples is to demonstrate both where and how the general-purpose numerical
modeling programs can be used as usetul engineering tools. Again, whenever possible. in
order to build further confidence in the numerical modeling capability, the analysis is com-
pared to empirical data. Building of this conlidence Tactor is always a continuing process.

In almost all the work described, the principal general-purpose program utilized is
the AMP program. In many applications, it was necessary to modify the existing AMP pro-
gram, and these moditications are noted. Some ol the associated subroutines arc listed in
the appendices for the convenience of readers who make use of the AMP program.

2.1 HF ANTENNA SYSTEM DESIGN FOR THE PATROL HYDROFOIL20

The Patrol Hydrofoil, Missile (PHM), is a high-speed patrol craft planned lor use by
NATO forees. Two prototype vessels are being designed and built under Navy contract by
the Boeing Acrospace Company. The small size of the PHM — length 40 meters — coupled
with the requirement for a rather extensive communication capability for this size ship. in
addition to weapon requirements, poses difficult antenna placement problems. This is es-
pecially true at ht where antenna spacings. in terms of wavelength, are small by necessity.

NELC was tasked by NAVSHIPS, PMS-303.6, to perform an hf antenna system de-
sign study in conjunction with the overall communications design cflort being pursued by
Boeing. Requirements Tor the h (2-30 MHz) subsystem on the PHM specified two 1-kW
transceive circuits capable of simultaneous operation and capable ol providing gapless 556-
Kilometer coverage. Limited topside space available for antennas precludes the use of broad- |
band antennas with multicouplers. Thus. the antenna system devised consists ot two separate
antenna structures: (1) a whip antenna on the port side, just att of the pilot house at the 01
level, and (2) a three-wire, bent-fan antenna, strung from the mast alt and ted at deck level
(see Figure 0). A sccond whip was installed parallel and starboard ol the Tirst whip to pro-
vide a backup receive circuit.
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Figure 6. Scale model of patrol hydrofoil (missile) (P1IM).

One of the primary restrictions on the hf communication system is that the two can-
didate hf antennas must be so arranged that they mecet the HERO (Hazards of Electromag-
netic Radiation to Ordnance) requirements for the PHM weapons: the Harpoon missile
launcher aft and the OTO MIELARA gun forward. The Naval Ordnance Systems Command
has established classitication of susceptibility pertinent to HERO.2T Susceptibility refers to
the actual induction of measurable rf energy into the electroexplosive devices (EEDs) inan
ordnarce system. The degree of susceptibility depends upon the amount of induced energy.
the eharacteristics of the EED, and the electric field environment.

For this project it was necessary to predict the electric tield intensity at both of the
PHM weapon sites. Thin-wire modeling computer calcutations were used to predict the
maximum expected peak electric fields for the antenna-to-weapon spacings chosen. Discus-
sions of these results appear in the next two sections (2.1, 1 and 2.1.2).

Another important problem is that of strong coupling between hf communications
systems due to the close proximity of the antennas. This problem arises on the PHM be-
cause of the limited available topside space and a requirement for simultancous operation
of two separate hi transmit systems.

In the PHM case. the problem of conpling has been solved by using a fan as one trans-
mit antenna and a whip as the other. Two whips placed at the separation distance of the fan
and whip do not provide sufficient isolation. On the other hand, the fun-whip eombination
has the required isolation.




In this case, isolation data were determined empirically. However, it is possible to
analy tically compute isolation. As a denonstration ol this capability, the isolation between
two whips on a ground plane has been computed. Section 2.1.3 contains a discussion of the
analytical approach and a comparison to empirical data.

2.1.1 WHIP NEAR FIELDS

The transmitting whip is the primary contributor to the electric field intensity in the
vicinity of the OTO MELARA guns. Electrie near-field catculations were made with the
NELC Whip Antenna program for perfectly conducting whip antennas of lengths 5.33
meters (17.5 Feet) and 10.67 meters (35 teet). At one time both lengths were considered as
candidate antennas. Analytically, the calculations were made for the antennas on an infinite,
perfectly conducting ground plane.

Figure 7 defines Case 1 as the 10.67-meter whip and Case 2 as the 5.33-meter whip.
A coordinate system with respect to the whips is also defined. Figures 8 and 9 show the
computed peak electric near field at varying heights above the ground plane and at varying
distances from the candidate whip antenna. The peak field is not directly related to the sum
of the squares and must be calculated by the method described in Reterence 22, For further
information concerning these calculations, also see Reterence 12,

The efficiencies referenced in these figures are for the URA/38 coupler attached to
the whip antennas. The losses associated with the whip antennas themselves are negligible
compared with the losses of the coupler.

The maximum electric near field at a tixed distance away from an antenna occurs at
the Lowest operating frequency. In Figure 6 the minimum distance to the OTO MELARA
gun s approximately 7 meters. Thus, at the lowest operating frequency of 2 MHz the peak

CASE 1. 35-FT WHIP,§1 =125 CASE 2: 17-1/2.FT WHIP, 2 = 11.11

Z (VERTICAL)

X (HOCRZONTAL)

DISTANCE FROM ANTENNA
DISTANCE ABOVE GROUND
PLANE

iz
WHIP ON AN INFINITE, PERFECTLY CONDUCTING GROUND PLANE

Figure 7. Whip on infinire, perfectly conducting ground plane.
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2 MHz 35.3%
4 MHz 80.0%
6 MHz 89 1%
10 MHz 89.5%
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8. Z=1m, 15-30 MHz

EFFICIENCY:
15 MHz 88.9%
20 MHz 89.6%
25 MHz 90.0%
30 MHz 88.9%

-
(=]
N
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l
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Figure 8. Peak clectric field at various frequencies (derated for coupler losses;
1.0 kW into coupler); case 1; 1 kW into coupler.
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Figure 8. (Continued)
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Figure 8. (Continued)
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Figure Y. Peak electric field, 2 - 15 Mz (derated for coupler losses: 1.0 kW into coupler);
1 kW into coupler.
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Figure 9. (Continued)

electric field at 1 meter above the deck and with an antenna-to-weapon spacing of 7 meters
is 115 rms volts/meter for the 5.33-meter whip (Figure 9A) and 81 rms volts/meter for the
10.67-meter whip (Figure 8A).

These computed results for a whip on a perfect ground plane can be extrapolated to
the whip on the PHM. In TR 1872 it is concluded that the near electric field is not a major
function of the structured environment surrounding the whip.12 Further, the whip on the
PIHM is situated 1.9 meters above the main deck. In Figure 10 the computations for an ap-
propriate sleeve monopole are compared with the computed electric near fields of the 10.67-
meter whip at 2 MHz. The sleeve monopole is fed 1.9 meters above ground and it extends
10.67 meters above its feed point. The computations are again made above a perfect ground.
Near the antenna the electric near field of the sleeve monopole is somewhat less than the
electric near field of the 10.67-meter whip. Thus, the computations of Figures 8 and 9 are
representative of the actual electric near fields which would occur onboard the actual PHM.

It is of interest to compare the computations of several numerical modeling programs.
Table 4 lists the computed results of the AMP, SYRACUSI:, and WELC programs for the
10.67-meter whip at 2 MHz over a perfect ground plane. The near-field results are all within
5% of each other. It is encouraging that there is this agreement among the computer
programs.

In conjunction with the analytical computations, near-field measurements for a whip
over an extended ground plane were made with an E-field sensor. EFS-1, manufactured by
Instruments for Industry, Inc. Figure 11 compares these measurements with the
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Figure 10. Comparison of calculated electric near field of whip and sleeve monopole.
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Figure 11. Compatison of measured and calculated peak electric near fields

for case 1 at 2.0 MHz (z = 1.0 meters).
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TABLE 4. COMPARISON OF CALCULATED NEAR FIELDS OF AMP, SYRACUSE, AND
WHIP 10.67-METER WHIP ANTENNAS AT 2 Mllz.

Impedance:
Z=20 j57l.‘)5 Z=1.48 j5()3.l Z=1782 j552.4
NEAR FIELDS FOR 1000 WATTS INPUT — 1.0 METER ABOVE DICK
AMP SYRACUSE WHIP Meters
frcm
l-x loz I:x Ez Ex kz Antenna
3435.2 2406.5 36554 26124 3468.0 2368.0 ]
1013.9 1404 .9 1072.5 1467.8 1019.0 1400.0 2
450.0 875.1 4724 Y006.2 452.8 873.3 3
2481 589 .8 2569 606 .4 2479 587.2 4
I 5258 418.0 157.8 428.1 153.0 415.5 S
101.9 307.2 104.6 313.5 101.7 304.3 6
29.2 110.8 20.6 1'12.3 28.9 106.8 10
9.2 4252 9.3 42.6 9.1 40.7 15
32 19.6 3.3 19.7 552 19.5 21

computations of the NELC program for the case oi the 10.67-meter whip at 2 MHz. The
comparisons are made at 1 meter above the extended ground plane. As previously pointed
out, the accuracy of any computation improves with the distance away from the anterna.
For cxample, the computation of the far-field pattern is significantly more accurate than the
computation of the impedance tor any antenna structure. Thus, in Figure 11 the computa-
tional accuracy of E, improves with distance away from the whip antenna. Thus, the in-
creased discrepuncy between measurement and calculation is attributable to measurement
inaccuracy. With this consideration, the calcutations compare well with the measurements.

2.1.2 FAN NEAR FIELDS

Because of the structural complexity of the fan antenna, calculation of theelectric near
ficlds for this antenna is a much more difficult problem. The radius of the linear elements
comprising the fan differs from the supporting mast by a factor of more than 50. If elements
of such different radii were directly connected, inaccurate calculations would result. In the
case of a top-fed fan, this condition may exist. For such an antenna, a thin-wire computation
wortld not be possible. However, in the case of this bottom-fed fan, the mast and an are not
electrically connected. A numerical computation of acceptable accuracy can be made.

A fairly complex model (125 segments) of the fan and its supporting mast was simulated
with the AMP program. Limited electric near-field data at 2 Milz were computed at varying
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distances. Again the maximum near field at a fixed distance away from an antenna oceurs at
the lowest operating frequency. Near-field measurements with the EIFS-1 were made of a
full-scale mock-up of this fan antenna and supporiing mast. The mock-up was constructed
on an extended ground plane, The results of these catculated and measured electric near
fietds are given in Table 5. (The Harpoon missile 1s situated 12 to 14 meters from the mast.)

]

2.1.3 ISOLATION

Consider the case of two 10.67-meter whips (standard 35-foot Navy whips) separated
7.6 meters on an extended ground plane. The isolation between these antennas can be com-
puted by ireating this coupling problem as a two-port network problem. This requires only
one run of the AMP program for each frequency to determine the two-port network admit-
tance parameters (Y1, Y12, Yoy, and Y22). Due to the symmetry of the problemn, Y =
Y>a. Also, since the network is bilateral, Yy 5 = L

Once the admittance parameters have been found, the input impedance and coupling
can be determined for arbitrary loading conditions. Straightforward network analysis yields
the following relationships for an arbitrary two-port system.

s Y
Zin= = 7L an
Vi o = Hy3® Y1 Wi

and

Py R, YL Yo
isolation = —=
Py ReYip |Yaa* Yo

5 (12)

where Y is the arbitrary load admittance. For a complete discussion of this topic see
Reference 23.

Equations (11) and (12) have been written into an interactive basic computer program
called “Nonradiating Network Program.” A listing of this program is given in Appendix A.
The short-circuit admittance parameters and load admittance, Y., are input to the program.
The program computes Z;y, and the isolation in dB (10 log P7/P1).

Figure 12 shows the isolation in dB versus frequency for two sets of independent
measurements. The computed isolation compares well with the empirical data.

TABLE 5. NEAR FIELDS OF FAN ANTENNA.

Frequency = 2.0 Mz
Coupler Losses = 5.1 dB

VERTICAL COMPONENT OF NEAR FII:LD
AT 1 METER ABOVE GROUND PLANE

Distance from Mast l Measured ' Calculated
12.5m 50 V/m 60.9 V/m
13.5m 38 V/m 46.3 V/m
14.5 m 30 V/m 359 V/m
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Figure 12, lsolation between two 10.67-meter whip antennas spaced 7.6 meters apart over a ground plane.
Curve A is 1aken from measured data in NELC TR 13824 Isolation is based on power transfer from one
whip 10 a second 1etminated in a conjugate match. Cusve B is based on measured data taken on the NFL(
ground plane with both whips inatched at cach frequency using AN/URA-38 antenna couplers and cor-
rected for coupler loss, Curve C is based on numerical modeling calculation.

2.2 MLA-1 MINILOOP ANTENNA: A TECHNICAL EVALUATIONZS

NELC was tasked by Naval Electronic Systems Command (NAVELEX) to technically
evaluate the Antenna Research Associates, Inc., Miniloop antenna type MLA-1. The frequency
range of this antenna is 1.8 - 14.5 MHz. Figure 13 shows the Miniloop installed.

Thin-wire modeling supported this evaluation in the following three areas: (1) deter-
mination of efficiency., {2) determination of ncar electric and magnetic ticlds, and (3) valida-
tion of the 1/48th scale model of the Miniloop for patterns. Discussions ol these topics are
contained in sections 2 : spectively.

In order to Tacilitate the modeling of the Miniloop antenna, an arc subroutine was
added to the geometry package of AMP. This subroutine is called in a manner similar to
subroutine WIRE Trom subroutine DATAGN. A listing of subroutine ARC is given in
Appendix B along with a description ol the appropriate geometry card. This description
follows the format of the AMP User’s Manual.”




Figure 13. MLA-I Minitoop installed aboard USS BRADLEY (DE 1041).

2.2.1 EFFICIENCY DETERMINATION
An attempt was made to determine the absolute efficiency of the Miniloop antenna:
that is. the ratio of the power actually radiated to the power fed to the antenna. The efficien-
o . 3 )
¢y ot any small (small in terms of wavelength) antenna can be expressed by:~(’

chusurcd X Ru

n= X 1007 (13)

Xy
where Ry and X, are the radiation resistance and the reactance of an ideal antenna (no losses)
and Qpeqsured is the “Q™ of the actual antenng derived from bandwidth measurements. In
the case of the Miniloop, R, and X, were determined by using the AMP program. The Q was
measured on the test antenna. These values were inserted into equation (13) to obtain efti-
ciency. This ability of thin-wire modeling programs to model lossless antennas is vatluable in
determining the efficiency of any small antennu,

Because shipboard operations are carried out within fixed (small) distances from ht
transmitting antennas, the Navy has a unique and fongstanding operational problem: 27 the
radiation from these antennas can be hazardous to personnel, ordnance, fuel, and electronic
cquipment due to the intensity of the fields in close proximity to the radiating element.
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Near-field computations were made for both the clectric and magnetic components
of the Miniloop antenna, Special emphasis was placed on the magnetic field determination
because theoretically the near magnetic field is greater for the MLA-1 antenna than for tlie
other communication antennas presently installed on Navy ships. Also, recent dcvclopmcnts28
have placed greater emphasis on the radiation hazards of magnetic tields to personnel,

In order to muke the magnetic field calculation, the AMP program was moditied.

The three subroutines NHFLD, GH, and HFK were added to the eode. NHEFLD is called from
the main program in the same manner as NEFLD. The magnetic fields are calculated in am-
peres/meter. A listing of subroutines NHFLD, GH, und HFK is given in Appendix C. The
magnetic tields thus computed compare well with the calculations reported in Reference 29,

The AMP program was used to make calculations of electric and magnetic tields at
2.0 MHz and a radiated power of 1 kW, the maximum power rating of the MLA-1 Miniloop
antenna. Again, 2.0 MHz was chosen because it is ¢close to the lower limit of the tuning
range of the antenna where at a fixed distance the near-field strength is greatest.

FFigure i4 presents selected computer-predicted near-field magnetic component data
for a lossless loop antenna having the dimensions of the MLA-1 Miniloop when radiating
I kW at 2.0 MHz. Figure 14A is a family of curves indicating magnetic field strength as a
function of distance from the antenna in the plane of the loop for several elevations above
the ground plane. Figure 14B is a tamily of curves indicating magnetie field strength, as a
function of distance from the antenna, in the vertical plane normal to the plane of the loop
and including the axial centerline of the loop.

Figure 15 presents selected computer-predicted data for the near-tield electric com-
ponent of a lossless loop antenna having the dimensions of the model MLA-1/E Miniloop,
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Figure 14. Computed values of peak magnetic field strength for the Miniloop
antenna radiating 1 kW at 2 MHz.
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Figure 15. Computed values of peak electric field strength for the Miniloop radiating 1 kW at 2 MHz.

when radiating 1 kW at 2.0 MHz. Figure 15A is a family of curves indicating electric field -
strength as a function of distance from the antenna in the plane of the loop for several eleva-
tions above the ground plane. Figure 15B is a family of curves indicating electric field
strength, as a function of distance from the antenna, in the vertical plane normal to the
plane of the loop and including the axial centerline of the loop.
It must be remembered that the calculated curves are based on a lossless antenna ra-
diating 1 kW. The Miniloop has very poor efficiency at the lowest frequencies where the
near fields are greatest. For the real world Miniloop, the values shown must be decreased
by the square root of the ratio of 1 kW to actual power radiated by the Miniloop.

2.2.3 PATTERN DATA

A 1/48th scale brass model of the Miniloop with supporting mast was built com-
patible with available brass ship models in inventory. However, the model was not an exact
duplicate of the full-scale Miniloop. No attempt was made to duplicate the feed method
used in the actual full-scale Miniloop. Rather, a one-turn, balanced, untuned, top-fed model
was forined of semirigid copper coaxial line, 0.086 inch in diameter.

Since the model is not exact, it was questionable whether the model and full-scale
antenna have the same radiation pattern. AMP was used to obtain analytically the inherent
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radiation pattern of the actual Miniloop over a losslesy, extended ground plane. This calcu-
lation was compared with the measured radiation pattzm of the model Miniloop mounted
on an extended ground plunc.* The two patterns conmpare exactly. Thus, the 1/48th scale
model Miniloop is validated for patterns.

*A comparison of the calculated and measured patterns at 2.0 Mz is given in Figure 106.

FREQ = 2 MHz

AZIMUTH PATTERN AT 45° ELEVATION
AZIMUTH PATTERN 0° TO 180°
VERTICAL

HORIZONTAL = == e ——

Figure 16. A comparison of the caleulated and measured radiation patierns of the MLA-1
Miniloop antenna.




2.3 AN/PRC-104 ANTENNA IMPROVEMENT STUDY

NELC was tasked by NAVELEX to (1) determine if alternate antennas would im-
prove the performance of the AN/PRC-104 above its present level when using an 8-foot
whip and (2) demonstrate, if possible, how the existing system could be used to provide
better performance in certain situations. The AN/PRC-104 is a Marine Corps man-pack,
2-30-Mllz, 20-watt transceiver designed to use an 8-foot GFE whip antenna. The primary
objective of this task was to improve the efficiency of the system at the low end of the band.

One of the most commonly suggested ways to improve the performance of a whip
antenna is to use a series inductive load somewhere along the antenna. Short whip antennas
have a “triangular’” current distribution. Placing an inductor on the whip makes it electri-
cally longer, and the current distribution is altered. I the proper inductance is placed at the
tip of the whip, a constant current distribution results. One can determine the maximum
change in radiation resistance caused by inductive loading by assuming an ideal situation,
where all input power is radiated. Consider the twe situations, one with the triangular dis-
tribution and one with a constant current distribution. In order for them to be equal radia-
tors, the area under the current distribution curves must be equal. This implies the feed
current of the constant distribution case is cne half of the triangular feed current case. Thus,
for equal power, the radiation resistance of the end-loaded whip is four times the unloaded
whip resistance. This is the maximum improvement in radiation resistance attainable by
loading.

The above discussion assuines an ideal inductor is used for loading. In reality, the
inductor has loss and the question is whether the center load inductor actually improves the
performance of the whip. The closer the inductor is placed to the tip of the whip, the larger
the required inductance and thus the more loss resistance of the inductor.,

C. W. Harrison30 describes a monopole on a perfectly conducting, extended ground
plane. The monopole is center loaded with an inductance of Q = 300. The monopole at
1 MHz has a height of 0.032 meter and a radius of 0.000123 meter. He then calculates the
necessary inductance for resonance and determines the resulting efficiency. A similar cal-
culation was made with the AMP program aided by the program in Appendix A. The pro-
gram of Appendix A is very useful in determining the load necessary for resonance. The
results are given in the table below.

TABLE 6. EFFICIENCIES OF INDUCTIVE-LOADED MONOPOLES.

Harrison AMP

Z

no load 0.385 - 1350 0.49511 -j1573.9

Efficiency
Base loaded 7.88% 8.62%
Center loaded 19.85% 8.79%




The results of AMP ditfer considerably tfrom Harrison'’s. However, the AMP results are in-
dependently supported by the analytical work of Reference 31. Obviously, son e empirical
work is needed in this area. However, due to sufficient confidence in numerical modeling,
it was concluded for this study that fixed inductive joading along the antenna will provide
little improvement above base inductive loading.

A similar problem was proposed to NELC by NAVSEC/NORDIV in Nortolk,
Virginia. The question was whether the efficiency of a 35-foot whip at I MHz could be
“mproved by inductive loading at the center of the whip. It was calculated that:

Mhase loaded = 0.43%
Neenter loaded = 0.45%

Again, in a quick response to the question, it could be stated that no improvement in efti-
ciency was achievable by center loading.

2.4 EVALUATION OF MULTITURN LOOP ANTENNA

NELC evaluated, for shipboard application, the HIF Multiturn .oop Antenna (MTL)
developed by Ohio State University. The prototype model delivered to NELC is constructed
from standard 2-inch copper tubing and fittings (Figure 17). It has the following
chuructcrislics::(‘

Tuning range: 2 to 10 MHz

Efficiency range: 1% to 30%

Bandwidth: 3 kHz minimum (3 dB)

impedance over tuning range: Adjustable to exactly 50 ohms
input power: | kW

Size of coil: (30.48 cm X 66.04 ¢cm X 66.04 ¢cm)

Weight: 50 ib

The configuration of the MTL is a rectangular six-turn coil or helix with its axis and largest
plane parallel to the ground plane. The separation of the lower coil side from the ground
plane is only 4 inches.

One of the technical objectives of the NELC evaluation was to recommend a final
design for both the transmitting and receiving functions. This section described how numer-
ical modeling assisted in achieving that objective. Two aspects of this technicat evaluation
are discussed below; one concerns the arrangement of the tuning capacitor and the other
concerns the orientation (horizontal vs vertical) of the MTL.

To the present, the study of hf antennas at NELC has been pursued almost entirely
through the use of 1/48th scale brass models. The characteristics of the antenna were pos-
tulated on the basis of measured impedances and patterns. These are the etfects. The numer-
ical modeling approach computes the cause, the current distribution on the antenna. The
ability to view the cause as well as the etfects will fead to a better understanding of an air
tenna. Such is the case in the study ot the MTL. This pumerical modeling study has been
pursued beyond the areas discussed here, providing usetul insights into the antenna’s
characteristics. These insights will make a significant impact on the final helix design.




Figure 17, HE muliur loop antenna of Ohio State University,

2.4.1 BALANCED VS UNBALANCED OPERATION

One of the first aspects of the prototype model considered is the arrangement of the
tuning capacitor. In its present configuration, the MTL tuning capacitor is across the entire
coil. At u given resonant frequency, the two coil ends are high-impedance (low current)
points. The single low-impedance (high current) point is at the center of the coil, midway
between the ends. This is a “balanced™ condition (the peak current occurs at the coil cen-
ter with low current at coil ends).

A different configuration is made possible by the change from a “balanced” to an
“unbalanced™ antenna. 17or the unbalanced case, one end of the coil is grounded. The tun-
ing capacitor is placed between the other coil end and ground. This arrangement has the
electrical advantage of providing mechanical drive of the tuning capacitor at ground potentiai
which helps to eliminate uncontrolled stray capacitance.

It was therefore suggested that the antenna be tuned in the unbalanced condition.
The contractor, Ohio State University, responded that a greater tuning range is achieved
with the tuning capacitor in purallel with the coil. In other words, the balanced condition
offers a greater tuning range for a given change in capacitance. An attempt was made to
verify this very important design question with the use of the thin-wire modeling tool.
Several steps were required to arrive at the answer.

The first step is to frame the question in a manner such that thin-wire modeling is
usetul. Its applicability is limiled by the thin-wire approximation. In the actual prototype
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model, the conductors are 100 ¢close together for thin-wire modeling. The approximation of
no azimuthal current flow is no longer valid. In the present form, the MTL is basically a
normal mode helix, so the computer model can be a larger normal mode helix such that the
thin-wire approximation is valid. The MTL chosen for the computer model is 2 meters long
with a helix radius of 0.239 meter.

The second step is to determine a suitable method of excitation sO that the balanced
and unbalanced conditions along the helix can be compared. In order to avoid introducing
the problem of two different feed arrangements, the antenna can be treated as a scattering
problem in which the excitation is an incident plane wave normal to the helix axis.

Figure 18 shows the configuration for the balanced case and the unbalanced case
MTL. In the case of the balanced antenna, the current is maximum at the center of the coil
at resonance. For the unbalanced antenna at resonance, the current maximum occurs at the
ungrounded coil end. By observing the location of the current maximum as the capacitance
is changed, the value of capacitance necessary for resonance is determined. Thisis casily
done with the computer models.

For the third step, a new subroutine for the AMP program to model the helix struc-
ture is required. The new subroutine, subroutine HELIX, is called from subroutine
DATAGN in a manner similar to subroutine WIRE. A listing of subroutine HELIX is given
in Appendix D along with a description of the appropriate geometry card. This description
follows the format of the AMP User’s Manual.

The results of this study are given in Table 7. The results confirin the contractor’s
point. In the balanced case fora 2:1 frequency change, a 4:1 capacitance change is needed.
In the unbalanced case, for a 2:1 frequency change, approximately an 8:1 capacitance
change is needed.

UNBALANCED MTL BALANCED MTL

7 % : fIﬂ ‘mh'r.

Figure 18. Configurations of balanced and unbalanced MTLs.

TABLE 7. CAPACITANCE NECESSARY FOR RESONANCE FOR BALANCED
AND UNBALANCED MTL ANTENNAS.

Frequency
4 MHz 8 MHz
Balanced Antenna 800 pF 200 pF
Unbalanced Antenna 360 pF 50 pF
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it 242 HORIZONTAL VS VERTICAL CONFIGURATION

A second aspect of the design of the MTL concerns the orientation of the MTL with
respect to ground. The axis of the present MTL is paratlel to the ground plane. 1t has the
structural contiguration of Figure 19. A center support runs the length of the helix. Because
of the coil’s close proximity to ground, the imaging effect limits the inherent radiation of
this MT1 contiguration. 1f the MTL is mounted with its axis vertical to the ground plane,
as in Figure 21, the inherent radiating efficiency of the antenna should be mproved since
the conductors are further from the ground plane: that is, there is Tess vancellation of cur-
rents due to imaging.

3 To verify this important point, a comparison of the characteristics of the two con-
figurations of the MTL was made using the AMP program. Figure 20 shows the impedance
computed for the horizontal case and Figure 22 shows the impedance for the vertical case.

1 Both antennas are base fed at the grounded end.

Since the prototype MTL is operated below the first natural resonance, the computer
model comparison is also made below the first resonance for both configurations, The radia-
tion resistance of the verticat helix is four to five times greater than the radiation resistance
of the horizontal helix. The basic structure (dimensions) of both helix configurations is

i essentiatly the same, hence the loss resistance of both antennas is approximately the same,

Thus. in a qualitative sense, the vertical configuration is a more efficient radiator.

3.0 CONCLUSIONS

The general-purpose thin-wire modeling programs provide a valuable engineering
tool. They are a valuable asset in various phases of communication system development.
As demonstrated in the case of the PHM study, the tool can assist in determining the effect
of the antenna system on other systems. This is a valuable contribution to preliminary sys-
tem planning. As in the case of the MTL and man-pack antenna projects. it can impact on
the preliminary antenna design itself. As in the case of the Miniloop, test results can be
evaluated and specifications prepared.

Typical problems that may be handled by the thin-wire modeling programs include
the following:

| Determine current distribution on antenna systems.
Determine impedances, both self und mutual, associated with antennas or arrays.
Obtain near-field (electric and magnetic) components.

Provide information on far-field patterns.

Provide information on the RADHAZ of an antenna system.

Provide information on the HERO consideration of an antenna system.

Provide information on the cfficiency of an antenna systen.

Examine the frequency characteristics of an antenna system.

Examine the EMC situation for a complex of antennas and identify problem areas.

Evatuate the impact of changes in antenna structures.
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Figure 19. Horizontal helix with center support.
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Figure 20. Compured resistance and reactance of horizontat helix with center support.
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Figure 21, Vertical helix with center support.
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Figure 22. Computed resistance and reactance of vertical helix with center support.




in cach case, eftective use of numerical modeling as an engineering tool requires that
the engineer be knowledgeable of the limitations of the numerical technigues. Such knowl-
edge is acquired through frequent exercise of the computer programs and a continued study
of the literature to keep abreast of developments as they oceur. 1t shouid also be noted that
the engineer is an integral part of the numerical analysis tool, since he plays the strategic
role of properly posing the problems so that useful answers may be obtained as well as i
interpreting the computer output to extract an engineering solution.

——
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APPENDIX A: NONRADIATING NETWORK PROGRAM

This basic computer program calculates the input impedance and dB coupling of a
two-port bilateral network.
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APPENDIX B: ARC

A Fortran subroutine for the MBA program, ARC generates the segmentation data

for a wire arc located in the X-Z plane.




WIRE ARC SPECIFICATION (GA)

PURPOSE: This card generates a wire are (<3607) of eqnal segments centered about the
origin in the X-Z plane.

CARD:
2] 5 10 20 30 40 50 60 70 80
GA| 2| NS [xwi [Ywl | Zwi RAD
The numbers along the top refer to the last columr
| | | in each field | l
1
PARAMETERS:
INTEGERS
ITG  tag number assigned to wire
NS number of segments into which are will be divided
DECIMAL NUMBERS

XW1 — radius of arc to be generated
YW1 - initial angle of arc in degrees (see diagram below)
ZW1 — final angle of arc in degrees (sec diagram below)

RAD - wire radius in same units as arc radius
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NOTES:

The initial and final angles are measured from the X-axis as indicated in the above
drawing. Clockwisc is the positive sense.

* Wires may not overlap; hence |Final Angle - Initial Angle |<360°. Specification of
overlapping wires will terminate the computer run,
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APPENDIX C: NHFLD, HFK, GH

Fortran subroutines for the MBA program calculate the magnetic near ficlds.
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Jul?2 Hi=OKF*RP 2=SCP %3
Cul 2 TR N
VOl4 :
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APPENDIX D: HELIX

A Fortran subroutine for the MBA program, HELIX generates the segmentation data
for a wire helix.

|
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WIRE HELIX OR SPIRAL SPECIFICATION (GH)

I
PURPOSE: This card generates a helix or a spiral around the Z-axis.
i
CARD: ﬂ 5 10 20 30 40 50 00 70 80
&) :
GH{E | NS S 1L Al Bl A2 B2 RAD
The numbers along the top refer to the last column
in each field. [
PARAMETERS:
INTEGERS

ITG  tag number

NS - number of segments in the whole helix

DECIMAL NUMBERS

S — axial spacing between turns

HL - total axial length

Al — radius in X direction at Z=0

Bl — radiusinY directionat Z=0
A2 — radiusin X direction at Z = |[HL|

A2 = Al = helix, A2 # Al - spiral
Therefore, A2 should not be left blank

B2 - radiusinY direction at Z = J1iL|

RAD  radius of wire

NOTES:
+ Bl 0 or left blank = Al = BI
B2 0 or left blank - A2 =B2

 If HL<0 - rotation going from top to bottom will be in a counterclockwise direc-
tion. 1L>0 rotation is in a clockwise direction,
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Also, it HL<0, the structure generated is rotated towards the right around the Z
axis 90 with respect to the clockwise structure (with HL>0). In other words, Al
will be along the +Y axis and Bl along the +X axis at 7 = 0. To counteract this, add
the following card: COORDINATI: TRANSFORMATION (GM) 907,

HL
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FORTRAN 1V G LEVEL 21 =) HELLX. —— JAIE = 14102 20/40/5%

0001 SUBROUT IHE MELIX(SoHL ALsBL,A2,82,RAD NS, LTG)
L SUBROUTINE HEL) X GENSRATES SEGMENT GECMETRY DATA FOR A HEL)X OF NS
_ SEQMENTS o
0002 (MPL)IC)T RFEALSA(A-H,7-2)
pon3 CCMMIN /DAY A/ X(2C0),Y1200),21200),51(2001,31(200).A
1 Bfr(zoo).)cnnl(zom.)CONz(ZOO).lTAG(ZOOl.uLAH.IPSVH.N.NP
2004 OIMENSION X2(1),Y210},22(0)
0005 EQUIVALENCE (X2(1),S)(1)),y (Y2(1),ALP(1DD, (2201)RETLL))
e DATA P1/3al415926C0/ o - e 5 o R
00u7 (ST=Nel 1
ooos = N=NENS . = _
0009 NP=zN
0010 1PSYM=0
goll [F(NSelLTel) RETURN
Q012 __TURNS=)ARSLHLLS) e . S S S
0ol3 LINC=DABS {HL/NS)
- = Li1)=9 : . & S
0015 00 25 1=)ST,N
0016 Bl1)=PAY —d
ooL? TTAGU))=1T6
_oojs . IFfleNEel) 2413=Z8]-1)e¢2INC - - o e e
ool 22(1)=2C 1) ¢ 2INT
020 _ L1F{A2eNELAL) 60 TO 10 ; = e
0021 JF(Ble"Qeu) 31=Al
90922 X([)=AL®NCIS(2e s [« 21} /5)
0023 Y(1)=R1*NSIN(2,30¢P)s2(1)/S)
0026 0 ¥20])=A1*DCIS 2 00 P e 22400 /5) e L
0025 Y2())=31%0SIN(2,00%P)*22(1)/S)
092 o _GJ_T0 29 T IR, A =
o271 0 18 (R2.7F0e) AR2=A2
0023 X(1)=(ALe(22-AL)®ZU])/CARSINL))*CCNSL24DUSP)ELL])/F)
0029 Y(I)=(314(52-R1)SZ(1)/CABS(HL) ) *DSIN(2.DOsPI*Z())/S)
0030 . %2(])l=tAlegag-2 1} +220) )/DABS(HL) ) *NCOSL2000 P12 2200} /5) . .
0031 V2())=('\10(‘32-‘H)'!?())/DABS(HL)l“)S)N(Z.’)O'P)'lZ(I)/S)
Q032 20 [StHLeuTeuw) 50 T 23 2 el IS
ou3l cl1y=x{))
NELS A(1)=Yt1) ¥
0035 Y(i)=COPY
T T S <11 L4 1. 1 15 I—— S L P Py e e
0037 £20))=Y20))
0V38 Y20 )=COPY ~ N |
0vl9 25 COuTHINYE
90«0 )F(A2e5QeAl) G T2 21
du4l SAIGLE=NATAR(AZ/Z(NARS(RL)+(DABS(HLI*ALY/[A2=-21) )
0042 pwlleya WY TF(6,104)5aNGLE I <. A p—
0043 104 E 1 AAT(SX, ' THE CONE ANGLE OF THE SO)RAL 153°,F10.4)
0044 AIFURN i ey R A
0045 21 IF(LLeMNFe 1Y 71 T 30
U040 HUL A=2,D)%2 ]
ovel TURNEHDI)ARP ]
00449 ) TO 40 i y
JJ49 Y9 (FlAleLTohl) G T 34
0U50 HA4LJ=2400%A 1 - o
Jus1 H4) =24 NURAL
0052 GRU i BS
0953 34 HMAD=2,00781
054 HMIN=2.00*AL _ -
0055 35 HOLA=NSOTIlAA L 1se2 e (MIN®E2) /20 4MA L)
FJSTRAN IV o LEy L 2L — O B HELLX DATE = 14102 2074075
YIS0 TUSA=2,N) =P sy
0o 7 40 PITCr=DATAN(S /2T *FI1A)
VAL aRJTE (6 uo)PITCEA TURN g kL
wusY 135 E 12MAT(5X, *THT OITOH ARGLE 157,01044/5%, 1 TH= LENGTH 1IF WIPF/TUAN )
15, Fl0e4)_ —
06y AICTURY
PIVLYY =]
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MAT 031
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06T
LIBRARY
COMMANDER, NAVAL ELECTRONIC SYSTEMS COMMAND
ELEX 03
ELEX 31031 (4)
ELEX 5012
ELEX 51012
ELEX 094
ELE X 501
ELEX 5103
ELEX 5401
ELEX PME 121
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LIBRARY
COMMANDER, NAVAL SHIP ENGINEERING CENTER
CODE 6174
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CODE 6179C03 (4)
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